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• Humans are good at perceiving and simulating the world 
with 3D structure in mind


• Previous deep generative models are often limited to a 
single object, hard to interpret, and missing the 3D structure
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• Mask-RCNN generates object proposals

• 3D De-renderer infers object attributes and free form 
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(byproduct: object edge map and object pose map)


• REINFORCE + regular gradient train on the loss
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Figure 3: 3D geometric inference. Given a masked object image and its bounding box, the geometric
branch of the 3D-SDN predicts the object’s mesh model, scale, rotation, translation, and the free-form
deformation (FFD) coefficients. We then compute 3D information (instance map, normal maps, and
pose map) using a differentiable renderer [Kato et al., 2018].

3D estimation. We describe a 3D object with a mesh M , its scale s 2 R3, rotation q 2 R4 as an unit
quaternion, and translation t 2 R3. For most real-world scenarios such as road scenes, objects often
lie on the ground. Therefore, the quaternion has only one rotational degree of freedom: i.e., q 2 R.

As shown in Fig. 3, given an object’s masked image and estimated bounding box, the geometric
de-renderer learns to predict the mesh M by first selecting a mesh from eight candidate shapes, and
then applying a Free-Form Deformation (FFD) [Sederberg and Parry, 1986] with inferred grid point
coordinates �. It also predicts the scale, rotation, and translation of the 3D object. Below we describe
the training objective for the network.

3D attribute prediction loss. The geometric de-renderer directly predicts the values of scale s
and rotation q. For translation t, it instead predicts the object’s distance to the camera t and the
image-plane 2D coordinates of the object’s 3D center, denoted as [x3D, y3D]. Given the intrinsic
camera matrix, we can calculate t from t and [x3D, y3D]. We parametrize t in the log-space [Eigen
et al., 2014]. As determining t from the image patch of the object is under-constrained, our model
predicts a normalized distance ⌧ = t

p
wh, where [w, h] is the width and height of the bounding box.

This reparameterization improves results as shown in later experiments (Sec. 4.2). For [x3D, y3D], we
follow the prior work [Ren et al., 2015] and predict the offset e = [(x3D � x2D)/w, (y3D � y2D)/h]
relative to the estimated bounding box center [x2D, y2D]. The 3D attribute prediction loss for scale,
rotation, and translation can be calculated as

Lpred = klog s̃� log sk22 +
⇣
1� (q̃ · q)2

⌘
+ kẽ� ek22 + (log ⌧̃ � log ⌧)2, (1)

where ·̃ denotes the predicted attributes.

Reprojection consistency loss. We also use a reprojection loss to ensure the 2D rendering of the
predicted shape fits its silhouette S [Yan et al., 2016b, Rezende et al., 2016, Wu et al., 2016a, 2017b].
Fig. 4a and Fig. 4b show an example. Note that for mesh selection and deformation, the reprojection
loss is the only training signal, as we do not have a ground truth mesh model.

We use a differentiable renderer [Kato et al., 2018] to render the 2D silhouette of a 3D mesh M ,
according to the FFD coefficients � and the object’s scale, rotation and translation ⇡̃ = {s̃, q̃, t̃}:
S̃ = RenderSilhouette(FFD�(M), ⇡̃). We then calculate the reprojection loss as Lreproj =

���S̃� S
���.

We ignore the region occluded by other objects. The full loss function for the geometric branch is
thus Lpred + �reprojLreproj, where � controls the relative importance of two terms.

3D model selection via REINFORCE. We choose the mesh M from a set of eight meshes to
minimize the reprojection loss. As the model selection process is non-differentiable, we formulate
the model selection as a reinforcement learning problem and adopt a multi-sample REINFORCE
paradigm [Williams, 1992] to address the issue. The network predicts a multinomial distribution over
the mesh models. We use the negative reprojection loss as the reward. We experimented with a single
mesh without FFD in Fig. 4c. Fig. 4d shows a significant improvement when the geometric branch
learns to select from multiple candidate meshes and allows flexible deformation.
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Figure 3: 3D geometric inference. Given a masked object image and its bounding box, the geometric
branch of the 3D-SDN predicts the object’s mesh model, scale, rotation, translation, and the free-form
deformation (FFD) coefficients. We then compute 3D information (instance map, normal maps, and
pose map) using a differentiable renderer [Kato et al., 2018].

3D estimation. We describe a 3D object with a mesh M , its scale s 2 R3, rotation q 2 R4 as an unit
quaternion, and translation t 2 R3. For most real-world scenarios such as road scenes, objects often
lie on the ground. Therefore, the quaternion has only one rotational degree of freedom: i.e., q 2 R.

As shown in Fig. 3, given an object’s masked image and estimated bounding box, the geometric
de-renderer learns to predict the mesh M by first selecting a mesh from eight candidate shapes, and
then applying a Free-Form Deformation (FFD) [Sederberg and Parry, 1986] with inferred grid point
coordinates �. It also predicts the scale, rotation, and translation of the 3D object. Below we describe
the training objective for the network.

3D attribute prediction loss. The geometric de-renderer directly predicts the values of scale s
and rotation q. For translation t, it instead predicts the object’s distance to the camera t and the
image-plane 2D coordinates of the object’s 3D center, denoted as [x3D, y3D]. Given the intrinsic
camera matrix, we can calculate t from t and [x3D, y3D]. We parametrize t in the log-space [Eigen
et al., 2014]. As determining t from the image patch of the object is under-constrained, our model
predicts a normalized distance ⌧ = t

p
wh, where [w, h] is the width and height of the bounding box.

This reparameterization improves results as shown in later experiments (Sec. 4.2). For [x3D, y3D], we
follow the prior work [Ren et al., 2015] and predict the offset e = [(x3D � x2D)/w, (y3D � y2D)/h]
relative to the estimated bounding box center [x2D, y2D]. The 3D attribute prediction loss for scale,
rotation, and translation can be calculated as

Lpred = klog s̃� log sk22 +
⇣
1� (q̃ · q)2

⌘
+ kẽ� ek22 + (log ⌧̃ � log ⌧)2, (1)

where ·̃ denotes the predicted attributes.

Reprojection consistency loss. We also use a reprojection loss to ensure the 2D rendering of the
predicted shape fits its silhouette S [Yan et al., 2016b, Rezende et al., 2016, Wu et al., 2016a, 2017b].
Fig. 4a and Fig. 4b show an example. Note that for mesh selection and deformation, the reprojection
loss is the only training signal, as we do not have a ground truth mesh model.

We use a differentiable renderer [Kato et al., 2018] to render the 2D silhouette of a 3D mesh M ,
according to the FFD coefficients � and the object’s scale, rotation and translation ⇡̃ = {s̃, q̃, t̃}:
S̃ = RenderSilhouette(FFD�(M), ⇡̃). We then calculate the reprojection loss as Lreproj =

���S̃� S
���.

We ignore the region occluded by other objects. The full loss function for the geometric branch is
thus Lpred + �reprojLreproj, where � controls the relative importance of two terms.

3D model selection via REINFORCE. We choose the mesh M from a set of eight meshes to
minimize the reprojection loss. As the model selection process is non-differentiable, we formulate
the model selection as a reinforcement learning problem and adopt a multi-sample REINFORCE
paradigm [Williams, 1992] to address the issue. The network predicts a multinomial distribution over
the mesh models. We use the negative reprojection loss as the reward. We experimented with a single
mesh without FFD in Fig. 4c. Fig. 4d shows a significant improvement when the geometric branch
learns to select from multiple candidate meshes and allows flexible deformation.
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Figure 3: 3D geometric inference. Given a masked object image and its bounding box, the geometric
branch of the 3D-SDN predicts the object’s mesh model, scale, rotation, translation, and the free-form
deformation (FFD) coefficients. We then compute 3D information (instance map, normal maps, and
pose map) using a differentiable renderer [Kato et al., 2018].

3D estimation. We describe a 3D object with a mesh M , its scale s 2 R3, rotation q 2 R4 as an unit
quaternion, and translation t 2 R3. For most real-world scenarios such as road scenes, objects often
lie on the ground. Therefore, the quaternion has only one rotational degree of freedom: i.e., q 2 R.

As shown in Fig. 3, given an object’s masked image and estimated bounding box, the geometric
de-renderer learns to predict the mesh M by first selecting a mesh from eight candidate shapes, and
then applying a Free-Form Deformation (FFD) [Sederberg and Parry, 1986] with inferred grid point
coordinates �. It also predicts the scale, rotation, and translation of the 3D object. Below we describe
the training objective for the network.

3D attribute prediction loss. The geometric de-renderer directly predicts the values of scale s
and rotation q. For translation t, it instead predicts the object’s distance to the camera t and the
image-plane 2D coordinates of the object’s 3D center, denoted as [x3D, y3D]. Given the intrinsic
camera matrix, we can calculate t from t and [x3D, y3D]. We parametrize t in the log-space [Eigen
et al., 2014]. As determining t from the image patch of the object is under-constrained, our model
predicts a normalized distance ⌧ = t

p
wh, where [w, h] is the width and height of the bounding box.

This reparameterization improves results as shown in later experiments (Sec. 4.2). For [x3D, y3D], we
follow the prior work [Ren et al., 2015] and predict the offset e = [(x3D � x2D)/w, (y3D � y2D)/h]
relative to the estimated bounding box center [x2D, y2D]. The 3D attribute prediction loss for scale,
rotation, and translation can be calculated as

Lpred = klog s̃� log sk22 +
⇣
1� (q̃ · q)2

⌘
+ kẽ� ek22 + (log ⌧̃ � log ⌧)2, (1)

where ·̃ denotes the predicted attributes.

Reprojection consistency loss. We also use a reprojection loss to ensure the 2D rendering of the
predicted shape fits its silhouette S [Yan et al., 2016b, Rezende et al., 2016, Wu et al., 2016a, 2017b].
Fig. 4a and Fig. 4b show an example. Note that for mesh selection and deformation, the reprojection
loss is the only training signal, as we do not have a ground truth mesh model.

We use a differentiable renderer [Kato et al., 2018] to render the 2D silhouette of a 3D mesh M ,
according to the FFD coefficients � and the object’s scale, rotation and translation ⇡̃ = {s̃, q̃, t̃}:
S̃ = RenderSilhouette(FFD�(M), ⇡̃). We then calculate the reprojection loss as Lreproj =

���S̃� S
���.

We ignore the region occluded by other objects. The full loss function for the geometric branch is
thus Lpred + �reprojLreproj, where � controls the relative importance of two terms.

3D model selection via REINFORCE. We choose the mesh M from a set of eight meshes to
minimize the reprojection loss. As the model selection process is non-differentiable, we formulate
the model selection as a reinforcement learning problem and adopt a multi-sample REINFORCE
paradigm [Williams, 1992] to address the issue. The network predicts a multinomial distribution over
the mesh models. We use the negative reprojection loss as the reward. We experimented with a single
mesh without FFD in Fig. 4c. Fig. 4d shows a significant improvement when the geometric branch
learns to select from multiple candidate meshes and allows flexible deformation.
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Figure 4: (a)(b) Re-projection consistency loss: Object silhouettes rendered without and with re-
projection consistency loss. (c)(d) Multiple CAD models and free form deformation (FFD): In (c), a
generic car model without FFD fails to represent the input vans. In (d), our model learns to choose
the best-fitting mesh from eight candidate meshes and allows FFD. As a result, we can reconstruct
the silhouettes more precisely.

3.2 Semantic and Textural Inference

The semantic branch of the 3D-SDN uses a semantic segmentation model DRN [Yu et al., 2017,
Zhou et al., 2017] to obtain an semantic map of the input image. The textural branch of the 3D-SDN
first obtains an instance-wise semantic label map L by combining the semantic map generated by the
semantic branch and the instance map generated by the geometric branch, resolving any conflict in
favor of the instance map [Kirillov et al., 2018]. Built on recent work on multimodal image-to-image
translation [Zhu et al., 2017b, Wang et al., 2018], our textural branch encodes the texture of each
instance into a low dimensional latent code, so that the textural renderer can later reconstruct the
appearance of the original instance from the code. By ‘instance’ we mean a background semantic
class (e.g., road, sky) or a foreground object (e.g., car, van). Later, we combine the object textural
code with the estimated 3D information to better reconstruct objects.

Formally speaking, given an image I and its instance label map L, we want to obtain a feature
embedding z such that (L, z) can later reconstruct I. We formulate the textural branch of the 3D-SDN
under a conditional adversarial learning framework with three networks (G,D,E): a textural de-
renderer E : (L, I) ! z, a texture renderer G : (L, z) ! I and a discriminator D : (L, I) ! [0, 1]
are trained jointly with the following objectives.

To increase the photorealism of generated images, we use a standard conditional GAN loss [Goodfel-
low et al., 2014, Mirza and Osindero, 2014, Isola et al., 2017] as: ⇤

LGAN(G,D,E) = EL,I

h
log (D(L, I)) + log

⇣
1�D

⇣
L, Ĩ

⌘⌘i
, (2)

where Ĩ = G(L, E(L, I)) is the reconstructed image. To stabilize the training, we follow the prior
work [Wang et al., 2018] and use both discriminator feature matching loss [Wang et al., 2018, Larsen
et al., 2016] and perceptual loss [Dosovitskiy and Brox, 2016, Johnson et al., 2016], both of which
aim to match the statistics of intermediate features between generated and real images:

LFM(G,D,E) = EL,I
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where F (i) denotes the i-th layer of a pre-trained VGG network [Simonyan and Zisserman, 2015] with
Ni elements. Similarly, for our our discriminator D, D(i) denotes the i-th layer with Mi elements.
TF and TD denote the number of layers in network F and D. We fix the network F during our
training. Finally, we use a pixel-wise image reconstruction loss as:

LRecon(G,E) = EL,I

h���I� Ĩ
���
1

i
. (4)

The final training objective is formulated as a minimax game between (G,E) and D:

G⇤, E⇤ = argmin
G,E

✓
max
D

⇣
LGAN(G,D,E)

⌘
+ �FMLFM(G,D,E) + �ReconLRecon(G,E)

◆
, (5)

where �FM and �Recon control the relative importance of each term.
⇤We denote EL,I , E(L,I)⇠pdata(L,I)

for simplicity.

5

(a) w/o re-projection (b) w/ re-projection (c) Single CAD w/o FFD (d) Multiple CADs w/ FFD

Figure 4: (a)(b) Re-projection consistency loss: Object silhouettes rendered without and with re-
projection consistency loss. (c)(d) Multiple CAD models and free form deformation (FFD): In (c), a
generic car model without FFD fails to represent the input vans. In (d), our model learns to choose
the best-fitting mesh from eight candidate meshes and allows FFD. As a result, we can reconstruct
the silhouettes more precisely.
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The semantic branch of the 3D-SDN uses a semantic segmentation model DRN [Yu et al., 2017,
Zhou et al., 2017] to obtain an semantic map of the input image. The textural branch of the 3D-SDN
first obtains an instance-wise semantic label map L by combining the semantic map generated by the
semantic branch and the instance map generated by the geometric branch, resolving any conflict in
favor of the instance map [Kirillov et al., 2018]. Built on recent work on multimodal image-to-image
translation [Zhu et al., 2017b, Wang et al., 2018], our textural branch encodes the texture of each
instance into a low dimensional latent code, so that the textural renderer can later reconstruct the
appearance of the original instance from the code. By ‘instance’ we mean a background semantic
class (e.g., road, sky) or a foreground object (e.g., car, van). Later, we combine the object textural
code with the estimated 3D information to better reconstruct objects.

Formally speaking, given an image I and its instance label map L, we want to obtain a feature
embedding z such that (L, z) can later reconstruct I. We formulate the textural branch of the 3D-SDN
under a conditional adversarial learning framework with three networks (G,D,E): a textural de-
renderer E : (L, I) ! z, a texture renderer G : (L, z) ! I and a discriminator D : (L, I) ! [0, 1]
are trained jointly with the following objectives.

To increase the photorealism of generated images, we use a standard conditional GAN loss [Goodfel-
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LGAN(G,D,E) = EL,I
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where Ĩ = G(L, E(L, I)) is the reconstructed image. To stabilize the training, we follow the prior
work [Wang et al., 2018] and use both discriminator feature matching loss [Wang et al., 2018, Larsen
et al., 2016] and perceptual loss [Dosovitskiy and Brox, 2016, Johnson et al., 2016], both of which
aim to match the statistics of intermediate features between generated and real images:
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where F (i) denotes the i-th layer of a pre-trained VGG network [Simonyan and Zisserman, 2015] with
Ni elements. Similarly, for our our discriminator D, D(i) denotes the i-th layer with Mi elements.
TF and TD denote the number of layers in network F and D. We fix the network F during our
training. Finally, we use a pixel-wise image reconstruction loss as:
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Figure 4: (a)(b) Re-projection consistency loss: Object silhouettes rendered without and with re-
projection consistency loss. (c)(d) Multiple CAD models and free form deformation (FFD): In (c), a
generic car model without FFD fails to represent the input vans. In (d), our model learns to choose
the best-fitting mesh from eight candidate meshes and allows FFD. As a result, we can reconstruct
the silhouettes more precisely.
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Ni elements. Similarly, for our our discriminator D, D(i) denotes the i-th layer with Mi elements.
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Figure 4: (a)(b) Re-projection consistency loss: Object silhouettes rendered without and with re-
projection consistency loss. (c)(d) Multiple CAD models and free form deformation (FFD): In (c), a
generic car model without FFD fails to represent the input vans. In (d), our model learns to choose
the best-fitting mesh from eight candidate meshes and allows FFD. As a result, we can reconstruct
the silhouettes more precisely.

3.2 Semantic and Textural Inference

The semantic branch of the 3D-SDN uses a semantic segmentation model DRN [Yu et al., 2017,
Zhou et al., 2017] to obtain an semantic map of the input image. The textural branch of the 3D-SDN
first obtains an instance-wise semantic label map L by combining the semantic map generated by the
semantic branch and the instance map generated by the geometric branch, resolving any conflict in
favor of the instance map [Kirillov et al., 2018]. Built on recent work on multimodal image-to-image
translation [Zhu et al., 2017b, Wang et al., 2018], our textural branch encodes the texture of each
instance into a low dimensional latent code, so that the textural renderer can later reconstruct the
appearance of the original instance from the code. By ‘instance’ we mean a background semantic
class (e.g., road, sky) or a foreground object (e.g., car, van). Later, we combine the object textural
code with the estimated 3D information to better reconstruct objects.

Formally speaking, given an image I and its instance label map L, we want to obtain a feature
embedding z such that (L, z) can later reconstruct I. We formulate the textural branch of the 3D-SDN
under a conditional adversarial learning framework with three networks (G,D,E): a textural de-
renderer E : (L, I) ! z, a texture renderer G : (L, z) ! I and a discriminator D : (L, I) ! [0, 1]
are trained jointly with the following objectives.

To increase the photorealism of generated images, we use a standard conditional GAN loss [Goodfel-
low et al., 2014, Mirza and Osindero, 2014, Isola et al., 2017] as: ⇤

LGAN(G,D,E) = EL,I
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where Ĩ = G(L, E(L, I)) is the reconstructed image. To stabilize the training, we follow the prior
work [Wang et al., 2018] and use both discriminator feature matching loss [Wang et al., 2018, Larsen
et al., 2016] and perceptual loss [Dosovitskiy and Brox, 2016, Johnson et al., 2016], both of which
aim to match the statistics of intermediate features between generated and real images:
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where F (i) denotes the i-th layer of a pre-trained VGG network [Simonyan and Zisserman, 2015] with
Ni elements. Similarly, for our our discriminator D, D(i) denotes the i-th layer with Mi elements.
TF and TD denote the number of layers in network F and D. We fix the network F during our
training. Finally, we use a pixel-wise image reconstruction loss as:
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The final training objective is formulated as a minimax game between (G,E) and D:
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where �FM and �Recon control the relative importance of each term.
⇤We denote EL,I , E(L,I)⇠pdata(L,I)

for simplicity.
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Semantic De-renderer

Virtual KITTI Editing Benchmark

{ 
  … 
  "operations": [ 
    { 
      "type": "modify", 
      "from": {"u": "750.9", "v": “213.9"}, 
      "to": { 
        "u": "804.4", "v": "227.1",  
        "roi": [194, 756, 269, 865] 
      }, 
      "zoom": “1.338", 
      "ry": "0.007" 
    }, 
    … 
    { 
      "type": "delete", 
      "from": {"u": “1328.5", "v": "271.3"}, 
    } 
  ] 
}

• 92 pairs of images picked from Virtual KITTI dataset 
• Each pair contains operations in .json format
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Virtual KITTI Editing Benchmark

• 2D/2D+: only texture code map and semantic label map; 
naïve translation and scaling (+out-of-plane rotation)
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(a) w/o re-projection (b) w/ re-projection (c) Single CAD w/o FFD (d) Multiple CADs w/ FFD

Figure 4: (a)(b) Re-projection consistency loss: Object silhouettes rendered without and with re-
projection consistency loss. (c)(d) Multiple CAD models and free form deformation (FFD): In (c), a
generic car model without FFD fails to represent the input vans. In (d), our model learns to choose
the best-fitting mesh from eight candidate meshes and allows FFD. As a result, we can reconstruct
the silhouettes more precisely.

3.2 Semantic and Textural Inference

The semantic branch of the 3D-SDN uses a semantic segmentation model DRN [Yu et al., 2017,
Zhou et al., 2017] to obtain an semantic map of the input image. The textural branch of the 3D-SDN
first obtains an instance-wise semantic label map L by combining the semantic map generated by the
semantic branch and the instance map generated by the geometric branch, resolving any conflict in
favor of the instance map [Kirillov et al., 2018]. Built on recent work on multimodal image-to-image
translation [Zhu et al., 2017b, Wang et al., 2018], our textural branch encodes the texture of each
instance into a low dimensional latent code, so that the textural renderer can later reconstruct the
appearance of the original instance from the code. By ‘instance’ we mean a background semantic
class (e.g., road, sky) or a foreground object (e.g., car, van). Later, we combine the object textural
code with the estimated 3D information to better reconstruct objects.

Formally speaking, given an image I and its instance label map L, we want to obtain a feature
embedding z such that (L, z) can later reconstruct I. We formulate the textural branch of the 3D-SDN
under a conditional adversarial learning framework with three networks (G,D,E): a textural de-
renderer E : (L, I) ! z, a texture renderer G : (L, z) ! I and a discriminator D : (L, I) ! [0, 1]
are trained jointly with the following objectives.

To increase the photorealism of generated images, we use a standard conditional GAN loss [Goodfel-
low et al., 2014, Mirza and Osindero, 2014, Isola et al., 2017] as: ⇤

LGAN(G,D,E) = EL,I
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where Ĩ = G(L, E(L, I)) is the reconstructed image. To stabilize the training, we follow the prior
work [Wang et al., 2018] and use both discriminator feature matching loss [Wang et al., 2018, Larsen
et al., 2016] and perceptual loss [Dosovitskiy and Brox, 2016, Johnson et al., 2016], both of which
aim to match the statistics of intermediate features between generated and real images:
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Ĩ
⌘���

1
+

TDX

i=1

1

Mi

���D(i)(I)�D(i)
⇣
Ĩ
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where F (i) denotes the i-th layer of a pre-trained VGG network [Simonyan and Zisserman, 2015] with
Ni elements. Similarly, for our our discriminator D, D(i) denotes the i-th layer with Mi elements.
TF and TD denote the number of layers in network F and D. We fix the network F during our
training. Finally, we use a pixel-wise image reconstruction loss as:
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The final training objective is formulated as a minimax game between (G,E) and D:
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where �FM and �Recon control the relative importance of each term.
⇤We denote EL,I , E(L,I)⇠pdata(L,I)

for simplicity.
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Figure 4: (a)(b) Re-projection consistency loss: Object silhouettes rendered without and with re-
projection consistency loss. (c)(d) Multiple CAD models and free form deformation (FFD): In (c), a
generic car model without FFD fails to represent the input vans. In (d), our model learns to choose
the best-fitting mesh from eight candidate meshes and allows FFD. As a result, we can reconstruct
the silhouettes more precisely.

3.2 Semantic and Textural Inference

The semantic branch of the 3D-SDN uses a semantic segmentation model DRN [Yu et al., 2017,
Zhou et al., 2017] to obtain an semantic map of the input image. The textural branch of the 3D-SDN
first obtains an instance-wise semantic label map L by combining the semantic map generated by the
semantic branch and the instance map generated by the geometric branch, resolving any conflict in
favor of the instance map [Kirillov et al., 2018]. Built on recent work on multimodal image-to-image
translation [Zhu et al., 2017b, Wang et al., 2018], our textural branch encodes the texture of each
instance into a low dimensional latent code, so that the textural renderer can later reconstruct the
appearance of the original instance from the code. By ‘instance’ we mean a background semantic
class (e.g., road, sky) or a foreground object (e.g., car, van). Later, we combine the object textural
code with the estimated 3D information to better reconstruct objects.

Formally speaking, given an image I and its instance label map L, we want to obtain a feature
embedding z such that (L, z) can later reconstruct I. We formulate the textural branch of the 3D-SDN
under a conditional adversarial learning framework with three networks (G,D,E): a textural de-
renderer E : (L, I) ! z, a texture renderer G : (L, z) ! I and a discriminator D : (L, I) ! [0, 1]
are trained jointly with the following objectives.

To increase the photorealism of generated images, we use a standard conditional GAN loss [Goodfel-
low et al., 2014, Mirza and Osindero, 2014, Isola et al., 2017] as: ⇤

LGAN(G,D,E) = EL,I
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⇣
1�D

⇣
L, Ĩ
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where Ĩ = G(L, E(L, I)) is the reconstructed image. To stabilize the training, we follow the prior
work [Wang et al., 2018] and use both discriminator feature matching loss [Wang et al., 2018, Larsen
et al., 2016] and perceptual loss [Dosovitskiy and Brox, 2016, Johnson et al., 2016], both of which
aim to match the statistics of intermediate features between generated and real images:
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Ĩ
⌘���

1
+

TDX

i=1

1

Mi

���D(i)(I)�D(i)
⇣
Ĩ
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where F (i) denotes the i-th layer of a pre-trained VGG network [Simonyan and Zisserman, 2015] with
Ni elements. Similarly, for our our discriminator D, D(i) denotes the i-th layer with Mi elements.
TF and TD denote the number of layers in network F and D. We fix the network F during our
training. Finally, we use a pixel-wise image reconstruction loss as:
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The final training objective is formulated as a minimax game between (G,E) and D:
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where �FM and �Recon control the relative importance of each term.
⇤We denote EL,I , E(L,I)⇠pdata(L,I)

for simplicity.
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Figure 4: (a)(b) Re-projection consistency loss: Object silhouettes rendered without and with re-
projection consistency loss. (c)(d) Multiple CAD models and free form deformation (FFD): In (c), a
generic car model without FFD fails to represent the input vans. In (d), our model learns to choose
the best-fitting mesh from eight candidate meshes and allows FFD. As a result, we can reconstruct
the silhouettes more precisely.

3.2 Semantic and Textural Inference

The semantic branch of the 3D-SDN uses a semantic segmentation model DRN [Yu et al., 2017,
Zhou et al., 2017] to obtain an semantic map of the input image. The textural branch of the 3D-SDN
first obtains an instance-wise semantic label map L by combining the semantic map generated by the
semantic branch and the instance map generated by the geometric branch, resolving any conflict in
favor of the instance map [Kirillov et al., 2018]. Built on recent work on multimodal image-to-image
translation [Zhu et al., 2017b, Wang et al., 2018], our textural branch encodes the texture of each
instance into a low dimensional latent code, so that the textural renderer can later reconstruct the
appearance of the original instance from the code. By ‘instance’ we mean a background semantic
class (e.g., road, sky) or a foreground object (e.g., car, van). Later, we combine the object textural
code with the estimated 3D information to better reconstruct objects.

Formally speaking, given an image I and its instance label map L, we want to obtain a feature
embedding z such that (L, z) can later reconstruct I. We formulate the textural branch of the 3D-SDN
under a conditional adversarial learning framework with three networks (G,D,E): a textural de-
renderer E : (L, I) ! z, a texture renderer G : (L, z) ! I and a discriminator D : (L, I) ! [0, 1]
are trained jointly with the following objectives.

To increase the photorealism of generated images, we use a standard conditional GAN loss [Goodfel-
low et al., 2014, Mirza and Osindero, 2014, Isola et al., 2017] as: ⇤

LGAN(G,D,E) = EL,I
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where Ĩ = G(L, E(L, I)) is the reconstructed image. To stabilize the training, we follow the prior
work [Wang et al., 2018] and use both discriminator feature matching loss [Wang et al., 2018, Larsen
et al., 2016] and perceptual loss [Dosovitskiy and Brox, 2016, Johnson et al., 2016], both of which
aim to match the statistics of intermediate features between generated and real images:
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where F (i) denotes the i-th layer of a pre-trained VGG network [Simonyan and Zisserman, 2015] with
Ni elements. Similarly, for our our discriminator D, D(i) denotes the i-th layer with Mi elements.
TF and TD denote the number of layers in network F and D. We fix the network F during our
training. Finally, we use a pixel-wise image reconstruction loss as:
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The final training objective is formulated as a minimax game between (G,E) and D:
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where �FM and �Recon control the relative importance of each term.
⇤We denote EL,I , E(L,I)⇠pdata(L,I)

for simplicity.
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featurizer

LP
IP

S

0.100

0.150

0.200

whole all largest

3D-SDN
2D
2D+

23.1%

76.9%

25.7%

74.3%

Perception Similarity Scores (lower is better) Human Study Scores (higher is better)

3D-SDN vs. 2D 3D-SDN vs. 2D+

References [pix2pixHD] Wang et al. High-Resolution Image Synthesis and Semantic 
Manipulation with Conditional GANs, In CVPR, 2018.


